Algebro-geometric Feynman Rules
نویسنده
چکیده
We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also construct an algebro-geometric Feynman rule with values in a polynomial ring, which does not factor through the usual Grothendieck ring, and which is defined in terms of characteristic classes of singular varieties. This invariant recovers, as a special value, the Euler characteristic of the projective graph hypersurface complement. The main result underlying the construction of this invariant is a formula for the characteristic classes of the join of two projective varieties. We discuss the BPHZ renormalization procedure in this algebro-geometric context and some motivic zeta functions arising from the partition functions associated to motivic Feynman rules.
منابع مشابه
Chern Classes of Graph Hypersurfaces and Deletion-contraction Relations
We study the behavior of the Chern classes of graph hypersurfaces under the operation of deletion-contraction of an edge of the corresponding graph. We obtain an explicit formula when the edge satisfies two technical conditions, and prove that both these conditions hold when the edge is multiple in the graph. This leads to recursions for the Chern classes of graph hypersurfaces for graphs obtai...
متن کاملReal-valued algebro-geometric solutions of the Camassa-Holm hierarchy.
We provide a detailed treatment of real-valued, smooth and bounded algebro-geometric solutions of the Camassa-Holm (CH) hierarchy and describe the associated isospectral torus. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint Hamiltonian systems. In particular, we rely on Weyl-Titchmarsh theory for singular (cano...
متن کاملAlgebro-geometric Solutions of the Boussinesq Hierarchy
We continue a recently developed systematic approach to the Bousinesq (Bsq) hierarchy and its algebro-geometric solutions. Our formalism includes a recursive construction of Lax pairs and establishes associated Burchnall-Chaundy curves, Baker-Akhiezer functions and Dubrovin-type equations for analogs of Dirichlet and Neumann divisors. The principal aim of this paper is a detailed theta function...
متن کاملBasic Algebro-geometric Concepts in the Study of Planar Polynomial Vector Fields
In this work we show that basic algebro-geometric concepts such as the concept of intersection multiplicity of projective curves at a point in the complex projective plane, are needed in the study of planar polynomial vector fields and in particular in summing up the information supplied by bifurcation diagrams of global families of polynomial systems. Algebro-geometric concepts are helpful in ...
متن کاملAn Alternative Approach to Algebro-geometric Solutions of the Akns Hierarchy
We develop an alternative systematic approach to the AKNS hierarchy based on elementary algebraic methods. In particular, we recursively construct Lax pairs for the entire AKNS hierarchy by introducing a fundamental polynomial formalism and establish the basic algebro-geometric setting including associated BurchnallChaundy curves, Baker-Akhiezer functions, trace formulas, Dubrovin-type equation...
متن کامل